Introduction to Lipidomics and the Tools Used to Analyze Lipids

UAB Metabolomics Workshop, July 2018

Paul RS Baker, PhD Director, Avanti Analytical Division

What are the Tools that People Use for Lipid Analysis?

ESI LC-MS/MS

- "Soft" ionization technique allows for intact complex lipid analysis
- MS/MS enables structural elucidation and quantitation
- No derivatization
- Must have a cogent internal standard strategy for quantitation

Acqui	sition Parameters	1	Time Module	Event Pump B Conc	Parameter		01
HPLC System	ExionLC™ System	2	6.00 Pumps 10.00 Pumps	Pump B Conc. Pump B Conc			6
MS/MS System	QTRAP® 6500+ System	4	11.00 Pumps 13.00 Pumps	Pump B Conc. Pump B Conc.			98
Injection Volume	5 µL	6	13.40 Pumps 13.50 Pumps	Total Flow			0.7
Column Temp	35ºC	8	18.60 Pumps	Pump B Conc.			100
Analytical Column	Xbridge Amide 4.6 x 150 mm 3.5 um		23.00 Pumps 23.50 Pumps 23.50 Pumps 24.00 Controller	Total Flow Total Flow Stop			1.5
LC Flow Rate	700 µL/min	13					_
Mobile Phase A	5%H2O/95% ACN with 1mM ammonium acetate, pH about 8.2		100 80	Grad	ient Curve	-	
Mobile Phase B	50% H2O/50% ACN with 1mM ammonium acetate, pH is 8.2	ш %	60 - 40 -			-	
Autosampler Wash	IPA		20 -			-	
Source & MS Parameter:	ISV: 5500 V CAD: 8 GS1: 50.0 CUR: 30 GS2: 60.0 TEM: 500 DP: 60 CXP: 15 EP: 10.0		0.0 9	5.0 10.0 Tir	15.0 ne (min.)	20.0 24.0	

LIPIDOMIX[®] Standards: Constructing Meaningful Spectra Single-vial Prepared Lipidomic Analytical Standard for Human plasma lipids Target Concentration **Mixture Component** (µg/mL) 15:0-18:1(d7) PC 75 Mouse SPLASH[®] 15:0-18:1(d7) PE 5 LIPIDOMIX[®] 15:0-18:1(d7) PS (Na Salt) 15 15:0-18:1(d7) PG (Na Salt) 4 **Quantitative Mass** 15:0-18:1(d7) PI (NH₄ Salt) 17 15:0-18:1(d7) PA (Na Salt) 7 **Spec Internal** 18:1(d7) Lyso PC 24 Standard 18:1(d7) Lyso PE 1 18:1(d7) Chol Ester 165 C18(Plasm)-18:1(d9) PC 16 15:0-18:1(d7) DAG 9 15:0-18:1(d7)-15:0 TAG 28 Deuterated LIPIDOMIX® standard contains all major lipid d18:1-18:1(d9) SM 15 classes in ratios relative to MOUSE plasma. C18(Plasm)-18:1(d9) PE 4

LIPIDOMIX[®] Standards: Constructing Meaningful Spectra

Odd-Chained LIPIDOMIX[®] Quantitative Mass Spec Internal Standard

Mixture Component	Target Concentration (µg/mL)						
17:1 Lyso PG (Na Salt)	13						
17:1 Lyso PA (NH₄ Salt)	15						
17:1 Lyso PI (NH₄ Salt)	13						
17:1 Lyso PS (Na Salt)	13						
17:1 Lyso PC	575						
17:1 Lyso PE	12						
17:0-17:0 DAG	300						
17:0-17:0-17:0 TAG	1500						
12:0 SM (d18:1/12:0)	650						
17:0-14:1 PC	3775						
17:0-14:1 PS (NH ₄ Salt)	180						
17:0-14:1 PG (NH ₄ Salt)	90						
17:0-14:1 PA (NH ₄ Salt)	15						
17:0-14:1 PE	120						
17:0-14:1 PI (NH ₄ Salt)	200						
17:0 Chol Ester	8475						

Ceramide LIPIDOMIX[®] Quantitative Mass Spec Standard

Mixture Component	Target Concentration (ug/mL)					
C16 Ceramide (d18:1/16:0)	16.1					
C18 Ceramide (d18:1/18:0)	8.5					
C24 Ceramide (d18:1/24:0)	48.8					
C24:1 Ceramide (d18:1/24:1(15Z))	24.3					

Deuterated Ceramide LIPIDOMIX[®] Quantitative Mass Spec Internal Standard

Mixture Component	Target Concentration (µg/mL)
C16 Ceramide-d7 (d18:1-d7/16:0)	21.8
C18 Ceramide-d7 (d18:1-d7/18:0)	11.5
C24 Ceramide-d7 (d18:1-d7/24:0)	26.3
C24:1 Ceramide-d7 (d18:1-d7/24:1(15Z))	13.1

Row	Component Name	Sample Name	Num, Val.	Mean	Standard Deviation	Percent CV	Value #1	Value #2	Value #3	T
P 1	SM(14:0)	Bik	1 of 1	3.022e3	NA	NA	3.022e3			-
2	SM(14.0)	Sample-03	3 of 3	6.094e8	4.669e6	0.77	6.146e8	6.082e8	6.055e8	-
3	SM(14:0)	Sample-06	3 of 3	5.633e8	1.602e6	0.28	5.634e8	5.617e8	5.649e8	-
4	SM(14:0)	Sample-11	3 of 3	5.676e8	3.726e6	0.66	5.642e8	5.716e8	5.670e8	-
5	SM(14.0)	Sample-12	3 of 3	4.522e8	1.107e7	2.45	4.501e8	4.641e8	4.423e8	
6	SM(14.0)	Sample-13	3 of 3	5.502e8	6.241e6	1.13	5.517e8	5.434e8	5.556e8	
7	SM(14:0)	Sample-14	3 of 3	3.311e8	4.641e6	1.40	3.328e8	3.347e8	3.259e8	
8	SM(14:0)	Sample-15	3 of 3	4.419e8	3.259e6	0.74	4.385e8	4.451e8	4.422e8	
9	SM(14:0)	Sample-16	3 of 3	5.258e8	1.120e6	0.21	5.269e8	5.246e8	5.260e8	
10	SM(14:0)	Sample-17	3 of 3	4.759e8	9.501e5	0.20	4.762e8	4.748e8	4.765e8	
11	SM(14:0)	Sample-18	3 of 3	3.979e8	1.808e6	0.45	3.958e8	3.989e8	3.990e8	
12	SM(14:0)	Sample-19	3 of 3	5.035e8	6.440e6	1.28	5.104e8	5.023e8	4.97768	
13	SM(14:0)	Sample-20	3 of 3	4.987e8	2.869e6	0.58	4.955e8	5.009e8	4.999e8	
14	SM(14:0)	Sample-21	3 of 3	4.976e8	1.881e6	0.38	4.99268	4.955e8	4.98168	_
15	SM(14.0)	Sample-23	3 of 3	4.264e8	1.293e6	0.30	4.257e8	4.255e8	4.278e8	_
16	SM(14:0)	Sample-24	3 of 3	3.830e8	3.848e6	1.00	3.786e8	3.849e8	3.856e8	_
17	SM(14.0)	Sample-25	3 of 3	5.122e8	1.656e7	3.23	4.935e8	5.250e8	5.182e8	_
18	SM(14.0)	Sample-26	3 of 3	4.617e8	1.404e6	0.30	4.630e8	4.602e8	4.618e8	-
19	SM(14:0)	Sample-27	3 of 3	4,44568	2.23267	5.15	4,18468	4,611e8	4,54368	-
20	SM(14.0)	Sample-20	3 01 3	4.51065	2.451-6	0.22	4.02160	4.00160	4.00000	
21	SM(14.0)	Sample 20	2 4 2	4.30000	5.025+6	1.08	4,607+2	4.706+8	4.57200	_
22	SM(14-0)	Sample 31	3.43	4 30468	3 373#6	0.78	4 265+8	4.315e8	4 330+8	%CV is a function of
24	SM(14-0)	Sample-32	3.013	4 728e8	4 929+6	104	4 534+3	4 718e8	4 781e8	
25	SM(14:0)	Sample-33	3 of 3	4.491e8	6.616e6	1.47	4.418e8	4.508e8	4.547e8	lipid abundance;
26	SM(14:0)	Sample-34	3 of 3	4.579e8	4.090e6	0.89	4.618e8	4.536e8	4.583e8	low abundance
27	SM(14:0)	Sample-36	3 of 3	4.356e8	9.388e6	2.15	4,248e8	4.405e8	4.416e8	lipide will have
28	SM(14:0)	Sample-37	3 of 3	4.703e8	1.326e7	2.82	4.900e8	4.757e8	4.552e8	iipius wiii nave
29	SM(14.0)	Sample-38	3 of 3	3.107e8	5.472e5	0.18	3.107e8	3.113e8	3.102e8	higher %CVs
30	SM(14:0)	Sample-39	3 of 3	2 966e8	2.438e6	0.82	2.947e8	2 959e8	2 994e8	

AVANTI POLAR LIPIDS

- Walt Shaw
- Kacee Sims
- Lisa Connell
- Steven Burgess

SCIEX

- Mackenzie Pearson •
- Sean Wu
- Santosh Kapil •

SCIENTIFIC COLLABORATORS

- Kim Ekroos (Zora Bioscience) Phil Sanders (Eli Lilly) •
- •
- Jeff MacDonald (UTSW) ٠
- Ed Dennis (UCSD) •
- Dayanjan (Shanaka) Wijesinghe (VCU)
- Michael Bukowski (ÚSDA) •
- Katy Williams (UCSF) •

